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The storage capacity of Ising spin networks storing spatially correlated patterns with explicit
learning rules is investigated. The correlations are introduced by using equilibrium configurations of
the Ising model at temperature 1/3. Using the Hebb rule, the storage capacity decreases strongly
with increasing 8. This can be avoided by a modification of the Hebb rule which includes the
inverse equilibrium correlation matrix of the Ising model. The theoretically derived expressions for
the storage capacity are in good agreement with the numerical simulation. In order to demonstrate
the working mechanism of the alternative learning rule the storage of simple linear patterns is

discussed in detail.

PACS number(s): 87.10.+e, 05.50.4+q

I. INTRODUCTION

Models of Ising spin networks used as an associative
memory are in general formulated in spin variables s, =
+1 (z = 1,..., N) describing the activity of N neurons
(firing or not firing).

The dynamic of the system describes the change of
the variables in time. It is established by calculating the
(n+1) . .
new state sg of neuron z as a nonlinear function of
the previous network state s(™). In the simple case of
two-state neurons the nonlinear function is given by the
“sgn” function

N
s = sgn (Z wzys§"’> (wee =0). (1)

y=1

A learning rule specifies how to store a given set of
p patterns £# = 1 (p = 1,...,p) in the synaptic ma-
trix wgy in order to enable the network to reproduce the
pattern associated to a presented initial (noisy) pattern.
Thus the stored patterns should be attractors of dynamic
(1). In the Hopfield model [1] a particular simple learning
rule is given by the Hebb rule [2]:

1 P
wgy = 5 O (6485 — 8ay). (2)
p=1

It is motivated by Hebb’s postulate about learning [3].

Symmetry of the synaptic matrix ensures the existence
of an energy functional which increases in time if only
one neuron is updated per time step according to (1)
(asynchronous dynamics). Since the energy functional
is bounded from below, convergence of (1) will be guar-
anteed and fixed points are local minima of the energy
functional.

For patterns whose spins are set independently of p
and z with equal probability to +1 (we call them random
patterns) the Hopfield model can be solved by methods
known from spin glasses [4,5]. By defining the parameter
a = p/N (the number of patterns per neuron) the critical
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value of the storage capacity is calculated to a. ~ 0.144.
If a exceeds a., the fixed points of (1) will have no simi-
larity with any of the stored pattern.

Because of the statistical independence of different
spins inside the random patterns the pattern space can-
not have any spatially topology while realistic patterns
possess spatial structure. In the present paper we want to
investigate the storage capacity of explicit learning rules
for more realistic spatially correlated patterns. The spa-
tial correlations are introduced statistically in order to
get quantitative statements about the storage capacity
when explicit learning rules are used. This concept of
spatial correlations in pattern space is of current interest
in physics of neural networks [6,7].

As an example we use the d-dimensional Ising model as
a generator of spatially correlated patterns. This means
that independent equilibrium configurations of the Ising
model at temperature T' = 1/ are stored as correlated
patterns. The next-neighbor interaction in the Ising
model induces spatial correlation. Its amount is con-
trolled by the inverse temperature or coupling strength
(3 and can be described by the correlation matrix or two-
point function (Sec. II). For inverse pattern temperature
B = 0 the usual random patterns are recovered and the
correlation between different spins of a pattern increases
with increasing 3. For dimension d > 1 there exists a
finite critical 8. where patterns with correlations over all
length scales are present. Our analytical investigations
are valid for 8 < B.. In Sec. II we give some properties
of the Ising equilibrium configurations used as correlated
patterns.

In Sec. III first we will see that the storage capacity
a.(B) decreases with increasing 3 when the Hebb rule (2)
is used to store these patterns. This can be heuristically
understood by the fact that for distances |z — y| < I(5)
[1(B) is the correlation length] the Hebb rule (2) measures
for large N and p the equilibrium correlation function of
the Ising model. It bears no information about partic-
ular patterns, which suggests a decrease of a.(8) with
increasing I(8).

The storage behavior can be improved when a linear
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transformation on the spin variables decorrelating the
patterns is applied. If the symmetric Hebb rule (2) is for-
mulated for the decorrelated patterns the transformation
back to the spin variables leads to an alternative asym-
metric learning rule. Below the critical region its storage
capacity is almost equal to that of random patterns. We
call this alternative learning rule “pseudosymmetric” be-
cause it corresponds to the symmetric Hebb rule for the
decorrelated patterns.

Of course, the capacity is still far from the optimal stor-
age capacity (. = 2 for random patterns) [8,9] but learn-
ing rules reaching larger storage capacities have the form
of iterative algorithms [9,10-12] resulting in a tedious
learning process. In contrast to this the pseudosymmet-
ric learning rule is explicit with negligible learning time
in comparison to iterative learning rules. Besides, prop-
erties of the storage mechanism can be understood com-
paratively easily because the synaptic matrix is given ex-
plicitly.

In Sec. IV the theoretical predictions for a.(3) are
compared with numerical simulations for both the origi-
nal Hebb rule and its pseudosymmetric modification de-
rived in Sec. ITI. Section V is devoted to the discussion
of how a network can implement this new learning rule.

II. PROPERTIES OF THE PATTERNS

The patterns we want to store are statistically inde-
pendent. Thus their probability distribution factorizes:

P(¢*,€) = P(¢*)P(€") for p#v. (3)

The generalization of our pattern statistic consists in the
fact that single spins inside the same pattern are corre-
lated. For simplicity we use equilibrium configurations of
a d-dimensional Ising model with periodic boundary con-
ditions as spatially correlated patterns. For the present
we keep the inverse temperature  well below the criti-
cal point 3.. The probability P(£) of a configuration to
occur is given by the Gibbs distribution

P(¢) = %e“’E“’, (4)
with
{¢}
and
E(&) = % Z E&Béyétz—y',l ’ (6)
z,y

where J),_y,1 restricts the summation to next-neighbor
pairs. The patterns can be characterized by the thermal
averages of {,, ...&;, (n-point functions). The correla-
tion matrix or two-point function

Gzy = <£z£y) = Z&zeyp(g) (7)
{¢}

depends only on the distance |z — y| and becomes expo-
nentially small for large |z — y|:

Goy ~ e~ 1Z7Y/B) | with |z — y| > 1(B), (8)

where [(3) denotes the correlation length.

Because of translational invariance g can be inverted
by Fourier transformation. While the off-diagonal ele-
ments of g are in general different from zero the inverse
correlation matrix (called proper vertex function) is to
good approximation a tridiagonal matrix:

92y = A(t)0zy — B(t)8jo—y,1, (9)
with

A(t)>1, B(t) >0, t=tanhg.

This is the “lattice version” of a Mexican hat. If one
introduces the lattice Laplacian
A,y = Jlm_y“ - 2d¢5,y, (10)
g~ ! reads as
1
= —[6ey — C(t)Agy] - 11
Gy X(t)[ ] () y] (11)

X = § X gy 9oy is the equilibrium susceptibility and C a
positive function of ¢. (9) is exact for d = 1 with

_ 144 t

A= " R
1-—1¢2° 1—1t2

(12)
if finite-size effects are neglected (tN =~ 0). For d = 2
we checked numerically that g~ has the form (9) below
the critical region (8 < (8. ~ 0.44). For our purpose a
high-temperature expansion up to O(t%) is sufficient. It
reproduces (9) with

A=1+42+12t*, B=t(1+t?). (13)

The computation of the storage capacity requires knowl-
edge about the four-point function gi‘f’_,,, describing
higher correlations. Separating g(*) into a connected and
a disconnected part

gg)...u = gzc:(:.).z:, + 9212292524 + Yz12392224 T 9212492325

(14)

the connected part g°(4) becomes exponentially small out-
side the critical region for any large separation of the
arguments z; (1 = 1,...,4).

An important property of the Ising patterns is self-
averaging for large N. Let S, be a matrix depending
only on the distance |z — y| with exponentially small el-
ements for |z — y| > I(3). Then the formula

D €2y Say ~ Tr(gS) (15)

z,y

holds for 14(8) < N. (15) can easily be proved by divid-
ing the lattice in p independent sublattices of size [A\l(3)]¢
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with A > 1. Then the left-hand side in (15) becomes a
measurement of the observable appearing on the right-
hand side. The relative error made in (15) is of order

p~1/2 = {{N(B)]¢/N}'/? which becomes small for large
N

The storage capacity of the Hebb rule will involve

1
XsG = NTr(gz) : (16)
In case d = 1 neglecting finite-size corrections

1+1¢2

e (a7)

XsG =
and the high-temperature expansion of 1/xsg for d = 2
reads as
1 4(t2 + 5t — 6t°) + O(t%). (18)
XSG
Xxsg corresponds to the Edwards-Anderson spin glass sus-
ceptibility investigated in spin glass models [13].

Our formalism can be generalized to other pattern
statistics, if the two-point function satisfies (8) and n-
point functions have the cluster property expressed by
(14). Self-averaging (15) is a consequence of (8) and (14).
The modification of the Hebb rule which we work out in
the following section is no longer a simple one as for our
patterns if the inverse of g does not satisfy (9).

III. THE PSEUDOSYMMETRIC
LEARNING RULE
If we define the postsynaptic potential

N
hy, = szysy, with wz, =0 (19)

y=1

of neuron = we immediately observe for the Hebb rule
(2) that the postsynaptic potential of neuron = can be
written as

ha(s) = 3 €8mu(s) — asa | (20)

where we have introduced the overlap with pattern £*:
L T
my(s) = ;64" = ijfz:sz : (21)

Now we assume that the network state s is close to one
pattern, say £, and the overlaps can be approximated
by

m(s) ~ { :n“ oy (22)

my, is the overlap between pattern y and v. Now we can
separate h, into a signal and a noise term:

hY(s) &+ Y Elmy,, — as, . (23)

u
BFY

The average of m,, over our pattern statistic is zero for
different patterns. If the patterns are attractors of the
dynamic the application of the nonlinear “sgn” function
will suppress the noise term. Thus we see that the per-
formance of the associative memory is satisfactory if the
variance of m,, becomes small. So we expect for the
storage capacity

ad (B) 1
ac(0) ~ N(mZ,(8))

Carrying out the average over the pattern statistic the
Hebb rule’s storage capacity becomes

al(B) 1
ac(O) N XSG(ﬂ) '

A more detailed derivation of this formula can be found
in the Appendix. Since the spin glass susceptibility xsg
increases strongly with 3 capacity drops from the known
value a.(0) = 0.144 for random patterns to zero, if 3
reaches the critical point (8 = co in d = 1).

Now we want to improve the storage behavior by a
modification of the Hebb rule based on a decorrelation of
the Ising patterns £. The decorrelation can be achieved
by the following transformation:

(24)

(25)

¢ def _ . _ _ _
= g7 withg V2g M2 =gt (26)
The transformed patterns have no two-point correlation
<£:céy> = (g_l/z.qg_l/z):cy = (Sz:y (27)

and they are normalized because of the self-averaging
property (15):

ETE= ST () = 1Y)

~ =Tr(g"'g)=1. (28)

2

2

The overlap for the decorrelated patterns
X 1,72,
s = €47 (29)

has zero mean for different patterns and its variance is
independent of 3 and equal to that of random patterns:

N 1
(mi,,) =~ for u #v . (30)
So the decorrelated patterns have the same properties as
random patterns if only two-point correlations are consid-
ered. This suggests that the decorrelated patterns should
be stored by the symmetric Hebb rule:

R 1 fug
Wl = NZggg; — @by - (31)
I

It stores the patterns as well separated local minima
(different patterns possess small overlaps) of an existing
energy functional. The dynamical variables are trans-
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formed in analogy to the pattern transformation:
Z 92?3y (32)

Unfortunately a dynamic in this transformed configura-
tion space which finds the local minima of the energy
functional is difficult to formulate because neighboring
configurations cannot be described as simply as for spin
configurations (neighboring configurations simply differ
in one spin flip). But if we define the postsynaptic po-
tential in analogy to (19),

Z wzysy, (33)

and assume that the network state is close to é” we can
separate a signal term as in (23) by taking normalization
of the patterns (28) into account:

h2(3) &8+ €, — ad, . (34)
utv
Now it is obvious that a proper dynamic should suppress

the noise term. If we transform the signal term back to
an Ising spin

S o ha) e+ D e —ane(59)

u#u

one immediately observes that the “sign” function ap-

plied on 2 g,,/, hy is a dynamic in the spin variables
with the desued property:

S  agn (zg;gzﬁy(g—msm) .
Yy

Inserting (33) we obtain the pseudosymmetric learning
rule:

(n+1) — Sgn (Z wPS (n)) , (36)

with

wPS = gl/zu‘;Hg_l/z

and, more explicitly,
==y =N Z & Z

We call the learning rule “pseudosymmetric” because it
results from a nonorthogonal transformation of the sym-
metric Hebb rule formulated in the decorrelated pattern
space.

The right hand side of (35) is formally the same as
that of (23) with m,, replaced by ri,,. Thus by follow-
ing the argumentation leading to the Hebb rule’s storage
capacity we expect for the pseudosymmetric learning rule

— 0bgy . (37)

afS(B) _ 1
ac(0) ~ N{(mz,(B))

(38)

Because of (30) the pseudosymmetric learning rule’s stor-
age capacity should be B independent (see also Ap-
pendix):

g% (0) = ac(0), (39)

which means a considerable improvement of the stor-
age capacity. (39) only holds below the critical region
since the decorrelation only considers the two-point func-
tion. The last term in (37) shall suppress self-excitations
(wzz ~ 0). Numerical simulations have proven that it
makes no difference on the storage capacity whether one
uses (37) or prohibits self-excitations rigorously (w., =
0). However, numerical simulations are made without
any self-excitations but calculations in the Appendix will
be more comfortable if (37) is used.

(37) is a generalization of a learning rule found in [6]
for feedforward perceptrons by modifying the Hebb rule.
Here the pseudosymmetric learning rule is derived for
fully connected associative neural nets with a decorrela-
tion formalism which directly suggests an improvement
of the storage capacity.

Our alternative learning rule is asymmetric and there-
fore convergence of dynamic (1) is not guaranteed. In
fact, non-convergence occurred in some cases in our nu-
merical simulations. Nevertheless investigation of the
Hamming distance’s time development

NZ

[€¥ = 5(9 is the inital configuration (see Sec. IV)] shows
that the Hamming distance of nonconvergent sequences
varies very slightly and periodically after a certain num-
ber of iterations. This indicates that the network’s state
cycles in configuration space with neglectable “radius.”
This sharp localization of the network’s state in config-
uration space justifies the breakoff after a finite number
of iterations.

Because of the structure of g~! [see (9)] summation
over y' contains only the y = 3’ term and next-neighbor
terms. Therefore the new learning rule is “almost” local
and of the form

wpy = NZ(A?‘E“ B&#Zaly vl )

(40)

dp(e”,s™) —¢&vs™), n=0,1,2,3,...

with
A>1, B>0.

Since the ¥’ summation extends only over next neighbors
of y, (40) shows the remarkable effect that the original
Hebb rule (2) which is represented by the first term on
the right hand side of (40) is modified in such a way
that the nelghbormg neurons of y influence the synaptic
strength wf between postsynaptic neuron x and presy-
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naptic neuron y inhibitorily. Thus we recover the in-
hibitory influence on neighboring neurons also observed
in biological neural nets [14].

Several learning rules have been developed which are
able to store correlated patterns and reach high storage
capacities. Nevertheless they have the form of iterative
algorithms [9,10-12] or they include a matrix inversion
for every particular set of patterns to be learned (pseu-
doinverse method [15-17]). So for every set of new pre-
sented patterns one has to go through a tedious learning
process. In our explicit learning rule the matrix g=! has
to be calculated only once for a specific pattern statistic
and then every set of correlated patterns generated with
the same statistic can be stored with very little effort.

Since the nontrivial part of g~! is the lattice Lapla-
cian [see (11)] the learning rule (37) implements a prior:
knowledge about dimension and number of next neigh-
bors. The network also has to know the pattern temper-
ature. In Sec. V, however, we will show a simple mecha-
nism for how the network can learn the temperature.

IV. NUMERICAL SIMULATIONS

In this Secon we present our numerical simulations of
the storage capacities a.(3) using the Hebb rule (2) and
the pseudosymmetric learning rule (37) to store corre-
lated patterns generated at temperature 1/3 by a Monte
Carlo algorithm. In our simulations the network size is
N = 900. Since only the ratio a.(8)/a.(0) needs to
be determined, results are rather insensitive to details
of the criterion a.(8) is determined from. Following [4]
one starts dynamic (1) from a pattern £”. Dynamic (1)
is iterated until convergence is reached. The final fixed
point w is compared with the initial configuration &”. If
the number of wrong bits does not exceed fpaxN with
fmax = 0.025, a “success counter” is incremented. The
average success po(a) is determined by repeating this pro-
cedure T times (T ~ 400).

Po(a) = [G(fmax - dH(gvvw))]g ’ (41)

o
@
B

a:p=0.0
2:B=03

0.05 a(0.3) 0.09 0.11 .13 a(0) 015 [

FIG. 1. Average success po(a) for random patterns
(B = 0.0) and d = 2 Ising patterns at inverse temperature
B = 0.3. The patterns are stored with the Hebb rule (2).
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FIG. 2. Normalized storage capacities ac(3)/ac(0) for

d = 1 Ising patterns stored with the Hebb rule (2) and with
the pseudosymmetric learning rule (37). The solid line repre-
sents 1/xsg from Eq. (17) confirming the theoretical predic-
tion (25).

with
d(€¥,w) = % 31— Ew,) -

O is the Heaviside function and []¢ means average over
T patterns. In the region of a., po(c) decreases drasti-
cally. This sharp transition defines a.(3) sufficiently ac-
curately, if one chooses a.(8) = pg ' (pc) with p. = 0.83.
In Fig. 1 we show an example for d = 2 Ising pat-
terns at § = 0 and B = 0.3 stored by the Hebb rule.
a.(0) = 0.143(8) is obtained in this way, which agrees
with results in [4,5,18].

Figure 2 shows a.(8)/a.(0) for d = 1 as a function
of tanh 8. Using the Hebb rule (squares) a. decreases
in agreement with the theoretical prediction (25) (solid

line). The pseudosymmetric learning rule (triangles)
10 — . - -
0.9 T
08 # i
0.7 N
c : Hebb \é

06 F 4 : Pseudosymm. |

3 MU LN

gos I

=

=}
IS
e

03 H

0.00 0.04 008 012 016 020 024 028 032 036 040 044
p

FIG. 3. Normalized storage capacities a.(8)/ac(0) for
d = 2 Ising patterns stored with the Hebb rule (2) and
with the pseudosymmetric learning rule (37). Here the
high-temperature expansion (18) (solid line) and Monte Carlo
simulations (inverse triangles) of 1/xsq in d = 2 confirm the
theoretical prediction (25).
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a

FIG. 4. Average success po(a) when d = 2 Ising patterns at
inverse temperature 3 = 0.3 are stored with the pseudosym-
metric learning rule. A storage capacity of a.(0.3) = 0.133(8)
is obtained if the noise level is chosen as r = 5%.

leads obviously to a much better behavior of the stor-
age capacity. The slight decrease with increasing tanh 8
indicates that the pseudosymmetric learning rule (37) in-
cludes only the two-point vertex function. The same is
shown for d = 2 in Fig. 3. The solid line is the high-
temperature expansion of 1/xsc. Supplementary values
of 1/xsc obtained by Monte Carlo simulations analogous
to those used in the +J Ising spin glass model [19] are
shown (inverse triangles). Here afS(8) ~ a.(0) until the
critical point at G, ~ 0.44 is reached.

Figure 4 shows that a neural network really works as
an associative memory when its synaptic matrix is estab-
lished by the pseudosymmetric learning rule. We stored
d = 2 Ising patterns at inverse temperature 3 = 0.3 and
started dynamic (1) with an initial pattern ¢ which is
a noisy variant of a stored pattern, say £”. The noise
level » = dy(€¥,() should exceed fmax. So we choose
r = 0.05 > frax. With the criterion described above
we obtain for the storage capacity a.(0.3) = 0.133(8)
demonstrating the net’s robustness against noise.

In addition to the neglected four-point function the

06 4 : mod. Hebb
s ]
5 05 % ]
5“ + 4

03

% i
ol % h g}d{ !

oo
0.0 . . N M P . . ]

000 004 008 012 016 020 024 028 032 036 040 044 048
B

°"{ o Hebb { 1

FIG. 5. Normalized storage capacities ac(8)/ac(0) for
d = 2 Ising patterns stored with the Hebb rule (2) and with
the modified Hebb rule (42).

global magnetization of the patterns causes the bad per-
formance of the associative memory for 8 > (.. The
nonvanishing magnetization is responsible for a.(3) = 0
in this region as easily can be seen by a signal-to-noise
analysis (see Appendix, [20]). To remove disturbing in-
fluence of the magnetization we apply a learning rule
similar to that suggested in [21] which is able to store
patterns where the spins are set independently but with
asymmetric probability for their orientation. Therefore
the patterns possess by definition a nonvanishing magne-
tization. We modify the usual Hebb rule in the following
way:

_ =2
1 mZ

. 1 Ld 1
Wl = ¥t > sgroer| (42)
u=1
with
_ def 1
m, = —1\7 Z&i‘a
ser ek —m,, .

If magnetization 7, is measured for a particular pattern
&#, the network does not need to know pattern temper-
ature a priori. Besides, there is no symmetry breaking
in a finite lattice and by measuring the magnetization
we are sure that the subtracted magnetization in 6¢¥ has
the right sign. Figure 5 shows the storage capacity of
the modified Hebb rule (42). As expected in the high-
temperature phase storage capacity is equal to the Hebb
rule’s storage capacity but for 8 > . an improvement is
obvious. The storage capacity of (42) reaches its mini-
mum at the pseudocritical point B.(N = 900) ~ 0.42.

An analogous modification of the pseudosymmetric
learning rule (37) for patterns with nonvanishing mag-
netization leads to the following prescription:

5 1 z -1
Wy =5 [1+ D9 S e st (43)
pn=1 y'
gc_l is the inverse matrix of g¢ whose elements are given

by g5, = gyy» —m? where m is the equilibrium magneti-
zation per spin.

V. FURTHER DISCUSSION ON THE
PSEUDOSYMMETRIC LEARNING RULE

Pattern correlation enters into the pseudosymmetric
learning rule via the inverse correlation matrix g—! of the
Ising model used. Since it has to be known prior to the
learning phase, the question remains of how a network
can learn g~!. First we show that the network has to
know only topology of the pattern space but not pattern
temperature. In the second place we demonstrate with
a special pattern how the pseudosymmetric learning rule
works.

Since the form of g~! is known, only the actual value
of B has to be learned. This can be achieved by adding a
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new system of neurons counting the total activity defined
as

a= 3 eelan) (5o) (44)
z,y
Self-averaging leads to
a= ST [g(B)g ™ (Bo)] - (45)

If activity a is measured by (44) and [, is the present
value, the unknown inverse pattern temperature (3 is
fixed by (45). The new system of neurons has to con-
tact the other pattern-recognizing system closely in order
to induce the learned temperature (more generally the
amount of correlation) into the pseudosymmetric learn-
ing rule.

The matrix g~(G) in (44) is to good approximation
given by (9) and all nondiagonal elements vanish except
next-neighbor indices. Therefore the new system con-
sists of neurons with short range nerve fibers and estab-
lishes a next-neighbor relationship or a kind of “metric
structure” in the neural network. Furthermore, since the
amount of correlation does not change rapidly in time,
the new system of neurons needs only information local
in time (one pattern is sufficient to learn the tempera-
ture). In contrast to that, the other system of neurons
learning particular patterns needs information nonlocal
in space and time (particular patterns change rapidly).
These neurons have long range nerve fibers. A similar sit-
uation is observed also in the cerebral cortex where two
very different populations of neurons are in close con-
tact to each other having the same properties as the two
systems described above [22,23].

For d = 1, g~! has the form

-1 1 u
gzy - ﬁ (5my - 56’z-‘y|,1) ) (46)
with
u = tanh(2p) .

It follows directly from (12) by applying addition theo-
rems. Evaluating the trace in (45) by inserting (46) we
obtain a relation between a and u:

2uy (1 —ay/1— ug)
2
(1 —ay/1— u(z)) + ul

u =

: (47)

with
up = tanh(20) .

Unless the network does not start from the extreme val-
ues ug = 0 or ug = 1 a new temperature can be learned
when one pattern is presented. Thus only topology of
the pattern space has to be implemented in the network
a priori.

Now we choose an extreme pattern for a linear d = 1
network as an illustrative example to demonstrate the
efficiency of the pseudosymmetric learning rule. Let ¢

be a linear pattern divided in ! chain pieces in such a
way that each chain piece consists of spins with equal
orientation. Furthermore, let [ < N in such a way that
O((I/N)?) is neglected. Calculating (44) in d = 1 we
obtain

1 U
—'—,_———.-.1 = ug 1-— —]—VE zx: £2£m+1]

and with }°_&.6o41 =N — 21

a =

e (120

Inserting this into (47) u is obtained as a function of /N
only:

B 1-2/N
YT 1 21/N 1 2(1/N)?

=1+ O0((I/N)?) .

So up to O((I/N)2?)g~! becomes proportional to the lat-
tice Laplacian (10)

g;yl x —Agy -
With wfy = £:€, (in the following we do not consider

possible self-excitations for more convenience) this leads
to

wfys x wfy 1—& (§y+1+ y-1)] (48)

and more explicitly

0 for & =&y41 =81
wfs o ng for & = &1 =& (49)
wf; otherwise .

This formula demonstrates that no synaptic connection
is necessary between presynaptic neuron y and postsy-
naptic neuron z, if the presynaptic neuron y is inside a
chain piece (this means spin y and its neighbors have
the same sign). Whereas the Hebb rule requires O(N?)
synapses, the pseudosymmetric rule stores only interest-
ing parts (the borders between different chain pieces) re-
quiring O(NN) synapses. From the a prior: knowledge
about the patterns (topology and “amount of correla-
tion”) the network is able to recognize those parts of the
pattern bearing important information about the partic-
ular pattern. The other parts (spins inside the chain
pieces) are regarded as the uninteresting “normal case”
which need not be stored. Thus the synaptic matrix is
diluted in a way that information already given by the
pattern statistic and being the same for all patterns will
be suppressed when a pattern is learned. This dilution
leads to a better storage behavior in comparison with the
Hebb rule which suppresses important information about
particular patterns by measuring uninteresting statistical
properties (see Sec. I).

A similar mechanism is used in electronic data process-
ing when a sequence of bits (0,1) is wanted to be stored.
Only the number of zeros will be stored and not the zeros
themselves, if the sequence consists almost of zeros. This
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is more efficient as long as the number of 0-1 changes is
small compared with the total number of bits.

VI. CONCLUDING REMARKS

The conception of statistically correlated patterns in
this paper can easily be generalized in such a way that
other pattern statistics can be investigated. In the
present work we use the Ising model as a generator of
correlated patterns because numerical and analytical in-
vestigation is relatively comfortable. However, our de-
veloped concepts should also be applicable to classes of
natural patterns consisting of many (may be a prior: un-
known) patterns with common (well known) properties.
Then these common properties can be summarized by a
pattern statistic P.(£) belonging to the special pattern
class c¢. If the pattern class fulfills the demands men-
tioned in this paper (cluster properties), particular pat-
terns should be stored satisfactorily with the pseudosym-
metric learning rule.

Other interesting phenomena may be observed if neu-
ral networks with “critical” patterns (e.g., Ising patterns
at B = () are investigated. We believe that explicit
learning rules which improve the storage of such patterns
require new network architectures.

Recently we received a paper also dealing with spa-
tially correlated patterns [27] in autoassociative memo-
ries. There the optimal storage capacity for weak spatial
correlations in one dimension is investigated analytically.
Furthermore, the author determines statistical proper-
ties of the synaptic matrix resulting from an iterative
learning algorithms [12]. Our investigations and inde-
pendently from [27] developed concepts for spatially cor-
related patterns lead to an explicit learning rule whose
properties can be directly investigated as demonstrated
in the present work. Maybe these different ideas can be
combined in order to optimize storage mechanisms of spa-
tially correlated patterns with respect to storage capacity
and learning expense.
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APPENDIX

In this appendix we give a derivation of (25) and (39).
Of course we are not able to solve the introduced neural
network models exactly for any given network tempera-
ture as made in [4] for random patterns, but since we are
only interested in the quotient a.(3)/a.(0) which com-
pares storage capacities for different pattern statistics,
the following calculation should be sufficient to describe
the storage behavior.

The Hebb rule (2) and the pseudosymmetric learning
rule (37) can be treated in parallel

1
w(k)zy = N z &:‘k(R)yy'g;' — gy,
m

with

1 for R=H
’“(R)={g—1 for R=P

We use Einstein’s summation convention except for the
special index z and the pattern indices u,v. So for R =
H (A1) reduces to the Hebb rule and for R = P (A1)
becomes the pseudosymmetric learning rule. Now let the
network configuration be £”. Then the local field acting
on spin z is given by

hy = w(k)eyy — ot .
Y

The storage capacity will be determined by investigating
the probability that spin &2 is stable:
P(m? >0), with m’ =§.h..

mY can be written as

my =3 X~ a, (A2)
m
with
1 V¢V
XH = NEL‘E;‘:k(R)yy'ﬁyﬁz . (A3)

We assume that mY is the sum of the independent ran-
dom variables X# [24]. By the central limit theorem
(p > 1) m¥ is Gauss distributed with

m = (m2) =3 (XH) - o, (A4)

In
o? € A?my =Y A2X#, (A5)
I

with
AZXH* = <X“2> — (X2,

Now we have to calculate first and second momentum of
X*#. If one considers independence of the configurations
&# and & for p # v, the following formulas are derived
easily.

B #v:
(X¥) = 25Tr(gkg) = XD,
1 (R
(x7) = aTahak) = X2
2w X(B) TR
with

(A6)

- _f xse¢ for R=H
X(R)_{l for R=P.
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p=v
v 1
(X¥) = 5Tr(gk) = 1,
1 for R=H
Xv?) = L
< > { %gyy'zz'gyylrgul, for R=P
0 for R=H

def v
=>af=A2X={ R—P

1 -1 -1
NZ9yy'z2'9yy1 9,0 — 1 for

Inserting this into (A4) and (A5) we obtain up to O(1/N)

m = (m7) =1+ a[x(R) — 1]+ O(1/N), (A7)
0? = A’m¥% = o2 + ax(R) + O(1/N) . (A8)
And the probability of m¥ > 0 is given by
y 1 e _(m=m)?
0) = 20
P(m? > 0) W/(; dme
1 et 2
= —= dze™* /% = , (A9
¢za[ﬂm 2e 2= f(2(8),  (A9)
with
Q 1 x(R) —1
~B) =" = 1+ax(RB) —1] (A10)

o Vo2 + ax(R)

For a < [x(R) — 1]7! ~ decreases monotonously with
increasing a and the storage capacity a.(03) is determined
by the condition that the probability P(m} > 0) should
be the same for all temperatures:

F(1e(B)) = f(7(0)) -

Yo means vy at the point @ = a.. The function f is
monotonously increasing and therefore equality of the ar-
guments follows:

'76(/8) = ’YC(O) .

This equation determines a.(3). It reads explicitly as

L+ a(B)R(B) -1 _ 1

oAU | Val) A
leading for the Hebb rule to

ol (B)xsc ~ a(0)

Since a.(8)(xsc — 1) < 1, (25) follows to good approxi-
mation:

a.(8) 1

ol (0) 7 xse

For the pseudosymmetric learning rule we obtain from
(A11)

o2 + aFS(8) = ac(0) . (A13)
The smallness of 02 can be seen by inserting (14) in the
equation for o2 leading to

2 -1 -1
o = mg;y’zz'gyy'gzz’ + N .
Outside the critical region the term including g€ is small
because of the cluster property of g°. Thus ¢ < 1 and
the pseudosymmetric learning rule’s storage capacity is

almost independent of 3:
a¥3(8) ~ a.(0) .

For magnetized patterns (3 > B, (€#) = m) aff be-
comes zero because of xsg > Nm* >> 1. Besides, o2 be-
comes comparable with a.(0) and (A13) leads to afS ~ 0
as for the Hebb rule. So above the critical point (3 > £.)
the learning rules (2), (37) have to be modified according

o (42), (43).
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